เนื้อหาคณิตศาสตร์ ตรรกศาสตร์
1. ประพจน์
ประพจน์ คือ ประโยคบอกเล่าหรือปฏิเสธที่มีค่าความจริงเป็นจริงหรือเท็จ
อย่างใดอย่างหนึ่งเท่านั้นตัวอย่าง
ประโยคที่เป็นประพจน์
ดาวอังคารเป็นดาวเคราะห์ (จริง)
จังหวัดลพบุรีไม่อยู่ทางภาคใต้ของประเทศไทย (จริง)
5 ≠ 8 (จริง)
19 + 4 ≠ 23 (เท็จ)
π เป็นจำนวนตรรกยะ (เท็จ)
ประโยคที่ไม่เป็นประพจน์
ได้แก่ ข้อความที่อยู่ในรูปของ คำถาม คำสั่ง คำขอร้อง คำอุทาน คำอ้อนวอน คำแสดงความปรารถนา สุภาษิตคำพังเพย ประโยคเปิด เพราะข้อความดังกล่าวไม่สามารถบอกค่าความจริงได้
ตัวอย่างประโยคที่ไม่เป็นประพจน์
คำถาม เช่น 3 หารด้วย 2 มีค่าเท่าไร
คำสั่ง เช่น จงยืนขึ้น
คำขอร้อง เช่น ช่วยกันรักษาความสะอาด
คำอ้อนวอน เช่น โปรดเมตตาด้วยเถิด
คำแสดงความปรารถนา เช่น อยากเห็นหน้าเธออีกสักครั้ง
คำอุทาน เช่น โอ้ย
สุภาษิตคำพังเพย เช่น วัวหายล้อมคอก
ประโยคเปิด เช่น เขาเป็นนักกีฬา
เครดิต สถาบันส่งเสริมการสอนวิทยาศาสต์และเทคโนโลยี กระทรวงศึกษาธิการ. (2544). ตรรกศาสตร์เบื้องต้น. .....................................................................................................................
2. การเชื่อมประพจน์
ถ้าให้ p และ q เป็นประพจน์ เมื่อนำประพจน์มาเชื่อมกันด้วยตัวเชื่อมแล้ว เราเรัยกประพจน์ใหม่ว่า ประพจน์เชิงประกอบ ซึ่งตัวเชื่อมที่ใช้จะมี 5 ตัว คือ
1) ตัวเชื่อม และ ใช้สัญลักษณ์ คือ " ∧ "
2) ตัวเชื่อม หรือ ใช้สัญลักษณ์ คือ " ∨ "
3) ตัวเชื่อม ถ้า... แล้ว... ใช้สัญลักษณ์ คือ " → "
4) ตัวเชื่อม ก็ต่อเมื่อ ใช้สัญลักษณ์ คือ " ↔ "
5) ตัวเชื่อม นิเสธ ใช้สัญลักษณ์แทนด้วย " ~ "
5) ตัวเชื่อม นิเสธ ใช้สัญลักษณ์แทนด้วย " ~ "
ตารางค่าความจริงของตัวเชื่อม
ข้อสังเกต
1) การเชื่อมประพจน์ด้วยตัวเชื่อม และ " ∧ " จะเป็น T เมื่อ p และ q เป็น T ทั้งคู่
2) การเชื่อมประพจน์ด้วยตัวเชื่อม หรือ " ∨ " จะเป็น F เมื่อ p และ q เป็น F ทั้งคู่
3) การเชื่อมประพจน์ด้วยตัวเชื่อม ถ้า... แล้ว... " →
4) การเชื่อมประพจน์ด้วยตัวเชื่อม ก็ต่อเมื่อ " ↔ " จะเป็น T เมื่อ p และ q มีค่าความจริงตรงกัน
.....................................................................................................................
กำหนด p , q , r เป็นประพจน์ที่ไม่ได้กำหนดค่าความจริงมาให้ จะเรียกประพจน์ที่มีตัวเชื่อมว่า รูปแบบประพจน์ เช่น ~p , p ∧ q , p → q , ( p ∨ q ) ↔ r เป้นต้น
ในการหาค่าความจริงของรูปแบบประพจน์ จะต้องพิจารณาค่าความจริงที่เป็นไปได้ของประพจน์ย่อยทุกกรณี โดยการสร้างตารางค่าความจริง
จำนวนกรณีที่พิจารณา = 2n กรณี
เมื่อ n คือ จำนวนประพจน์ย่อยของรูปแบบประพจน์นั้น
.....................................................................................................................
4. ประพจน์ที่สมมูลกัน
ประพจน์สองประพจน์ใด จะสมมูลกันก็ต่อเมื่อประพจน์ทั้งสองมีค่าความจริงเหมือนกันทุกกรณี ใช้สัญลักษณ์ ≡ แทนคำว่า สมมูล ประพจน์ที่สมมูลกันจะสามารถใช้แทนกันได้ เนื่องจากมีค่าความจริงเหมือนกันทุกกรณี
การตรวจสอบว่าประพจน์สมมูลกันหรือไม่ ทำได้ 2 วิธี ดังนี้
4.1 ใช้ตารางแสดงค่าความจริง
ตัวอย่าง จงตรวจสอบว่าประพจน์ต่อไปนี้สมมูลกันหรือไม่
1. p → q กับ ~p ∨ q
จะเห็นว่า ค่าความจริงของ p → q กับ ~p ∨ q ตรงกันกรณีต่อกรณี
ดังนั้น p → q สมมูลกับ ~p ∨ q
2. ~p ∧ q กับ p → q
จะเห็นว่า ค่าความจริงของ ~p ∧ q กับ p → q มีบางกรณีต่างกัน
ดังนั้น ~p ∧ q ไม่สมมูลกับ p → q
4.2 ใช้รูปแบบของประพจน์ที่สมมูลกัน
รูปแบบของประพจน์ที่สมมูลกันที่สำคัญ
1. p ∧ ~p ≡ F
2. p ∨ ~p ≡ T
3. p ∧ T ≡ p
4. p ∨ F ≡ p
5. ~(~p) ≡ p
6. p ∨ q ≡ q ∨ p
7. p ∧ q ≡ q ∧ p
8. ( p ∨ q ) ∨ r ≡ p ∨ ( q ∨ r ) ≡ p ∨ q ∨ r
9. ( p ∧ q ) ∧ r ≡ p ∧ ( q ∧ r ) ≡ p ∧ q ∧ r
10. p ∨ ( q ∧ r ) ≡ ( p ∨ q ) ∧ ( p ∨ r )
11. p ∧ ( q ∨ r ) ≡ ( p ∧ q ) ∨ ( p ∧ r )
12. ~( p ∨ q ) ≡ ~p ∧ ~q
13. ~( p ∧ q ) ≡ ~p ∨ ~q
14. p → q ≡ ~q → ~p
15. p → q ≡ ~p ∨ q
16. ~( p → q ) ≡ p ∧ ~q
17. p ↔ q ≡ ( p → q ) ∧ ( q → p )
.....................................................................................................................
5. สัจนิรันดร์
ประพจน์ที่เป็นสัจนิรันดร์ คือ รูปแบบของประพจน์ที่มี ค่าความจริงเป็นจริงเสมอ ไม่ว่าประพจน์ย่อยจะมีค่าความจริงเป็น จริง หรือ เท็จ ก็ตาม เช่น p ∨ ~p , p → p , ~( p ∧ ~p ) , p ↔ p เป็นต้น
การตรวจสอบว่าประพจน์ใดเป็นสัจนิรันดร์ ทำได้ดังนี้
1. ใช้ตารางแสดงค่าความจริง
ตัวอย่าง จงตรวจสอบว่าประพจน์ต่อไปนี้ เป็นสัจนิรันดร์หรือไม่
1. [ ( p → q ) ∧ p ] → q
จะเห็นว่ารูปแบบของประพจน์ [ ( p → q ) ∧ p ] → q มีค่าจริงเป็นจริงทุกกรณี
ดังนั้น [ ( p → q ) ∧ p ] → q เป็น สัจนิรันดร์
2. ใช้วิธีการหาข้อขัดแย้ง
ตัวอย่าง จงตรวจสอบว่าประพจน์ต่อไปนี้ เป็นสัจนิรันดร์หรือไม่
1. ( p ∧ q ) → ( q ∨ p )
วิธีทำ สมมุติว่า ( p ∧ q ) → ( q ∨ p ) เป็นเท็จ
จากแผนภาพ จะเห็นว่า ค่าความจริงของ p และ q เป็นได้ทั้งจริงและเท็จ
แสดงว่าไม่มีกรณีที่ทำให้ ( p ∧ q ) → ( q ∨ p ) เป็นเท็จ
ดังนั้น รูปแบบของประพจน์ ( p ∧ q ) → ( q ∨ p ) เป็นสัจนิรันดร์
.....................................................................................................................
6. การอ้างเหตุผล
การอ้างเหตุผลจะประกอบด้วยส่วนสำคัญ 2 ส่วนคือ
1. ส่วนที่เป็น เหตุ หรือ สิ่งที่กำหนดให้ ซึ่งได้แก่ P1 , P2 , P3 , … , Pn
2. ส่วนที่เป็น ผล ซึ่งได้แก่ Q
ในการอ้างเหตุผลอาจจะสมเหตุสมผล (valid) หรือไม่สมเหตุสมผล (invalid) ก็ได้ ซึ่งมีวิธีการตรวจสอบ
คือใช้ สัจนิรันดร์ โดยเชื่อมเหตุทุกเหตุด้วยตัวเชื่อม ∧ แล้ว นำเหตุกับผลมาเชื่อมด้วยตัวเชื่อม → ดังนี้
ถ้า รูปแบบ ( P1 ∧ P2 ∧ P3 ∧ … ∧ Pn ) → Q เป็นสัจนิรันดร์ แสดงว่า การอ้างเหตุผลนี้ สมเหตุสมผล
ถ้า รูปแบบ ( P1 ∧ P2 ∧ P3 ∧ … ∧ Pn ) → Q ไม่เป็นสัจนิรันดร์ แสดงว่า การอ้างเหตุผลนี้ ไม่สมเหตุสมผล
ตัวอย่าง จงตรวจสอบว่าการอ้างเหตุผลต่อไปนี้สมเหตุสมผลหรือไม่
เหตุ 1. p → q
2. p
ผล q
วิธีทำ ขั้นที่ 1 ใช้ ∧ เชื่อมเหตุเข้าด้วยกัน และใช้ → เชื่อมส่วนที่เป็นเหตุกับผล
จะได้รูปแบบของประพจน์คือ [( p → q ) ∧ p] → q
ขั้นที่ 2 ตรวจสอบรูปแบบของประพจน์ที่ได้ว่าเป็นสัจนิรันดร์หรือไม่
จากแผนภาพ แสดงว่า รูปแบบของประพจน์ [( p → q ) ∧ p] → q เป็นสัจนิรันดร์
ดังนั้น การอ้างเหตุผลนี้สมเหตุสมผล
.....................................................................................................................
7. ประโยคเปิด
ประโยคเปิด หมายถึง ประโยคบอกเล่า หรือ ประโยคปฏิเสธที่มีตัวแปร ประโยคเปิดจะไม่เป็นประพจน์ แต่เมื่อแทนค่าตัวแปรด้วยสมาชิกในเอกภพสัมพัทธ์แล้วประโยคเปิดนั้นจะเป็นประพจน์
เช่น เขาเป็นนักดนตรี เป็นประโยคเปิด มีคำว่า "เขา" เป็นตัวแปร
x + 5 < 0 เป็นประโยคเปิด มี x เป็นตัวแปร
7x-2 ไม่เป็นประโยคเปิด เพราะเมื่อแทนค่า x แล้ว ไม่เป็นประพจน์
สัญลักษณ์แทนประโยคเปิดใดๆ ที่มี x เป็นตัวแปร เขียนแทนด้วย P(x)
.....................................................................................................................
8. ตัวบ่งปริมาณ
.....................................................................................................................
9. ค่าความจริงของประโยคที่มีตัวบ่งปริมาณตัวแปรเดียว
ประโยคที่มีตัวบ่งปริมาณนั้น โดยทั่วไปจะมีองค์ประกอบ 3 ส่วน คือ
1. ส่วนที่้เป็นตัวบ่งปริมาณ
2. ส่วนที่เป็นประโยคเปิด
3. ส่วนที่เป็นเอกภพสัมพัทธ์
.....................................................................................................................
10. ค่าความจริงของประโยคที่มีตัวบ่งปริมาณสองตัว
การหาค่าความจริงของประโยคที่มีตัวบ่งปริมาณสองตัว มีหลักการดังนี้
กำหนดให้ U แทนเอกภพสัมพัทธ์
และ P(x,y) แทนประโยคเปิดที่มี x , y เป็นตัวแปร
ทำยังไงก็ไม่เข้าใจ
ตอบลบทำยังไงก็ไม่เข้าใจ
ตอบลบค่อย ๆ ดู ถ้ามองออกจะสนุกมากครับ
ตอบลบ